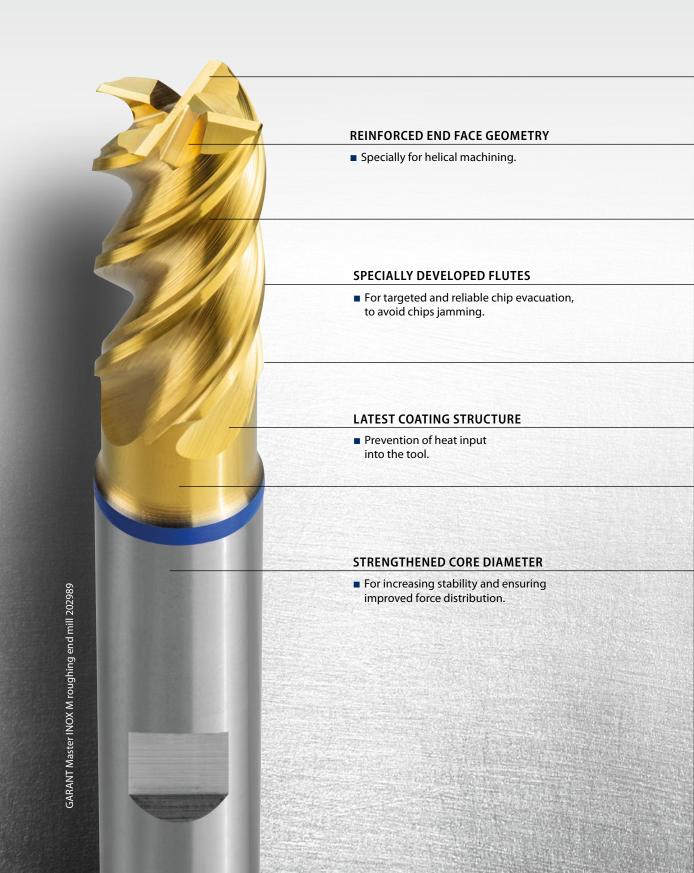


Å Hoffmann Group

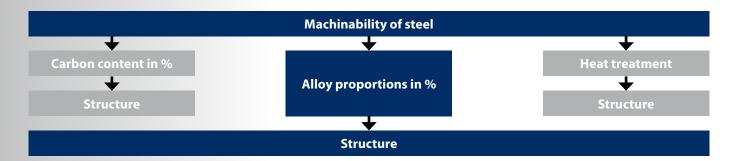
SIMPLY THE BEST PERFORMANCE FOR HIGH-ALLOY STEELS.

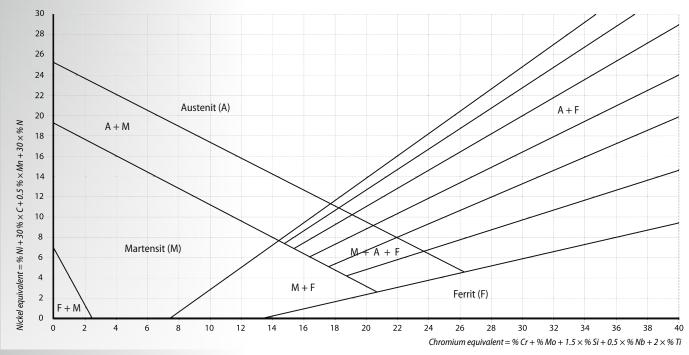

GARANT Master INOX M – newly developed for outstanding tool life and optimum metal removal rate.

Garant

THE GARANT MASTER INOX M – WHAT MAKES IT SPECIAL.

THE NEW STAR FOR MACHINING HIGH-ALLOY STEELS (DIN EN 10088).




SIMPLY THE RIGHT DECISION: ALLOY PROPORTIONS AND THE GARANT MASTER INOX.

Depending on the micro-structure of the metal, metallurgists distinguish four groups of stainless steels: Martensitic, austenitic, ferritic and ferritic-austenitic (duplex) steels. The general machinability of stainless materials depends largely on the existing alloy elements and the heat treatment that is carried out.

Schaeffler diagram

Difficulty of machining stainless steels according to the structure (Ni content and/or Cr content).

NICKEL (NI)

- Monitoring the structure: Austenitic structure as of \geq 8 % Ni.
- Increases the toughness.
- Corrosion resistance.
- Largely non-magnetic at a higher Ni content.
- More difficult to machine as Ni content increases.

CHROMIUM (CR)

- Stainless steels contain ≥ 12 % chromium.
- Forms a protective chromium oxide layer (passive layer) on the surface with oxygen.
- Improves hardenability (carbide formation).
- Composite carbide formation (with higher C-content at the same time).
- Difficult to machine.

Austenitic structure

1.4301, 1.4306; 1.4541; 1.4401; 1.4404; 1.4435; 1.4571; 1.4539; 1.4529;

Austenitic stainless steels (12-25 % chromium and 5-30 % nickel)

Austenitic CrNi-steels with more than 8 % nickel are characterised by excellent corrosion resistance and because of their mechanical properties are still generally easy to machine. They therefore belong to the most important group of stainless steels and are recommended for many applications. Austenite, on the other hand, has an increased molybdenum content (greater than or equal to 5 %) and a higher proportion of nickel (approx. 25 %) and is very difficult to machine.

Austenite / ferrite (duplex structure)

1.4062; 1.4162; 1.4362; 1.4462; 1.4410; 1.4501; 1.4507;

Austenitic-ferritic stainless steels (18-27 % chromium, 4-7 % nickel and 2-5 % molybdenum)

Due to the low proportion of nickel, the material is not able to develop a completely austenitic structure. This material yields a structure with ferritic and austenitic elements, which is why it is also referred to as duplex steel. The addition of a proportion of molybdenum not only increases the corrosion resistance but also improves the tensile strength and heat resistance of the material; it does however make machining very difficult.

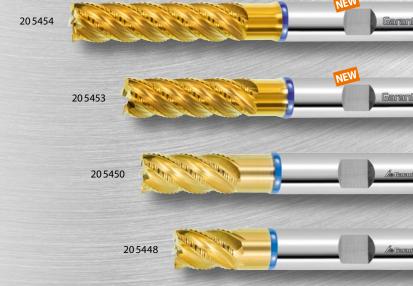
Martensitic structure

1.4005; 1.4006; 1.4021; 1.4028; 1.4031; 1.4034;

Martensitic stainless steels (12-18 % chromium and 0.15 % ≤ carbon)

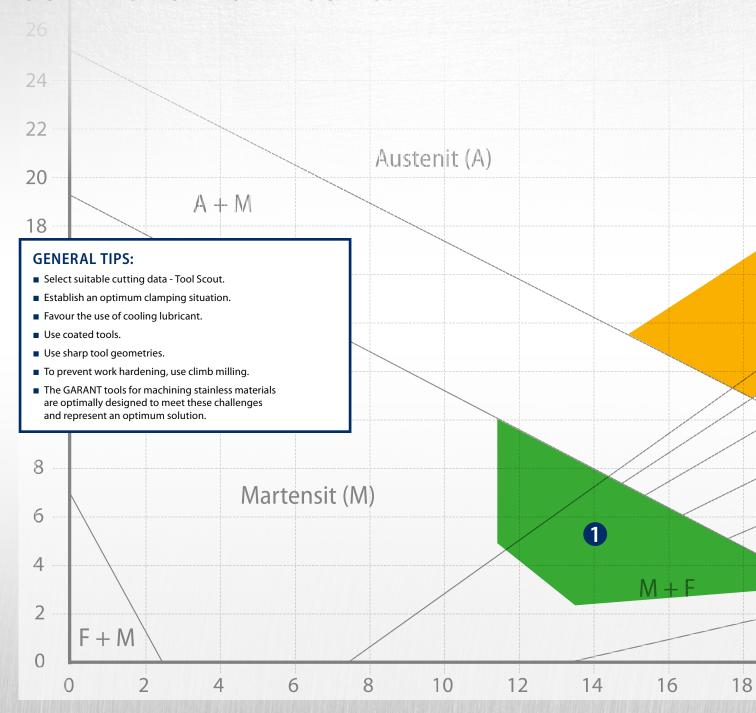
Here the distinction is made between carbon martensitic steels with 0.2–0.4 % carbon and nickel martensitic stainless steels with 0.05 % C and 4 % nickel. Depending on their product form, these steels are supplied either annealed or hardened and tempered, which has major implications for mechanical machining. In principle, carbon martensitic stainless steels are machined like carbon steels.

Ferritic structure

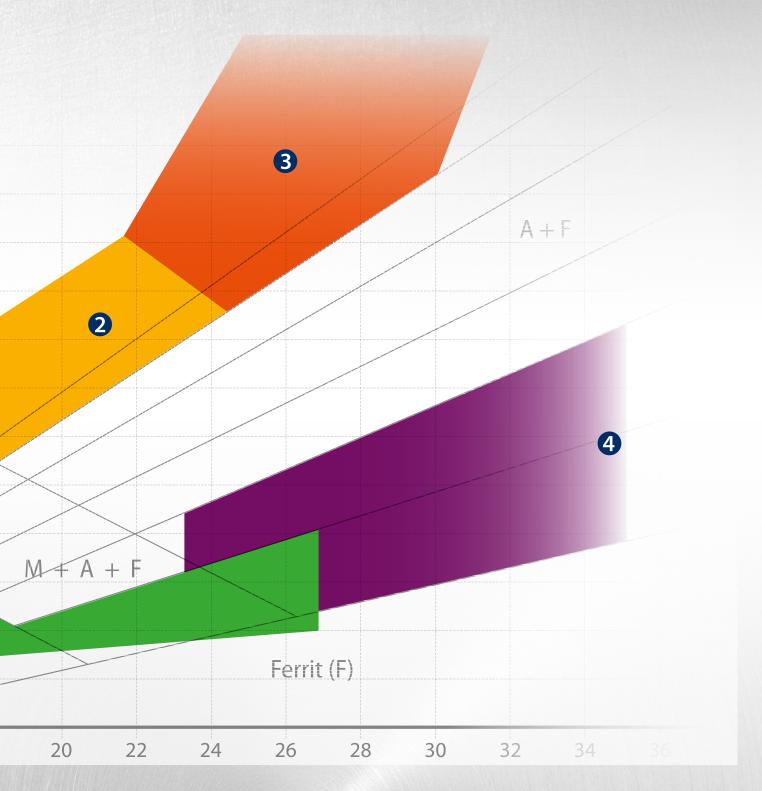

1.4003; 1.4515;

1.4016; 1.4510; 1.4511; 1.4501; 1.4509;

1.4311; 1.4521;


Ferritic stainless steels (11-17 % chromium)

The corrosion resistance of ferritic stainless steels with a chromium content of 11–12 % is less marked than for austenitic stainless steels; they are therefore referred to as corrosion-resistant rather than stainless steels. For 17% chromium steels on the other hand, the corrosion resistance is significantly better. The low carbon content of ≤ 0.06 % means that these steels cannot be hardened. They have a tendency towards galling, but can easily be mechanically machined.


THE SIMPLE WAY TO MACHINE PARTS CORRECTLY: OUR TIPS FOR TOP RESULTS.

- 1 FERRITIC / MARTENSITIC
 - General good machinability.
 - No abrasive wear.
 - Comparison to ISO P (machining steel).

2 AUSTENITIC

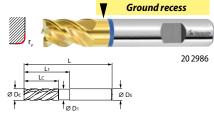
- Use lower feed rates than for machining steel.
- Select low start cutting speeds.
- Caution against formation of built-up edges.

3 SUPER AUSTENITE

- Generally very difficult to machine.
- Reduce a_e and maximise a_p (TPC strategy).
- Caution against formation of built-up edges.
- Tool tip: Continuous wear monitoring. GARANT Master INOX M is the first choice because of its sharp geometry (lower edge honing and larger rake angle).

4 DUPLEX

- Very demanding machining.
- Use cooling lubricant with increased fat content (up to 13 % solution).
- Reduce a_e and maximise a_p (TPC strategy).
- Continuous wear monitoring. GARANT Master INOX M is the first choice because of its sharp geometry (lower edge honing and larger rake angle).



HPC

GARANT Master INOX M HPC solid carbide milling cutter

Milling cutter with newly developed high-performance coating for outstanding tool working life and optimum metal removal rates in a wide range of stainless steels. Can be used at high **cutting speeds**, e.g. in duplex steels.

Successor product to No. 202993. Note:

Suitable for/ v _c [m/min]	Alu plastics	Alu ⊘D D	Alu cast > 10 % Si	₹ < 500 N	I < 750 N	I < 900 N	I < 1100 N	 < 1400 N	< 55 HRC	I < 60 HRC	< 65 HRC	 	< 70 HRC	TOOLOX 33 HRC	TOOLOX° 44 HRC	INOX < 900 N	INOX > 900 N	Uni	6		M	×																																										
ISO code	N	N	N	P	P	P	P	P	Н	Н	Н	Н	Н	Н	Н	M	M		İ																																													
20 2986				250	230	200	180	170						115	80	100	90	0		•	•	0	•																																									
Ø e8 D _c	≅ 20 2986 GARANT Master INOX M solid carbide milling cutter				L _c L ₁			Ø D ₁		L		D _s	Corner rounding r _v			INOX > 900 N		INOX > 900 N																																														
mm				HPC TiAIN				mn	,	mm		mm		mm	mı	m	mm			mm		mm																																										
3				35.15				mm 5		-		-		50	6		0.1			0.02		0.03																																										
4				35.15				8		_		_		54			0.1			0.0			04																																									
5				35.15				9				_		54			0.1			0.0			05																																									
6				35.15				10		16		5.8		54	6			0.1		0.0	4	0.0	05																																									
8				49.30				12		20		7.7		58	8		(0.15		0.0	6	0.0	07																																									
10	62.67			62.67		62.67		62.67		62.67			14		24		9.7		66)		0.2		0.0	7	0.0	08																																				
12	79.00			79.00		79.00		79.00		79.00		79.00			16		26		11.6		73		2		0.2		0.0	7	0.0	09																																		
16	128.50			128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50		128.50			22		32		15.5		82	16	ó		0.2		0.0	8	0.	.1
20	187.90				26		40		19.5	92		20		0.2			0.1		0.12																																													

Solid carbide

45

TPC

GARANT Master INOX M solid carbide milling cutter HPC/TPC

Milling cutter with newly developed high-performance coating for outstanding tool working life and optimum metal removal rates in a wide range of stainless steels. Can be used at high **cutting speeds**, e.g. in duplex steels.

366.30

Successor product to No. 203009.

Suitable for/ v _c [m/min]	Alu plastics	Alu Ø	Alu cast > 10 % Si	I < 500 N	< 750 N	# < 900 N	I < 1100 N	I < 1400 N		I < 60 HRC		3 < 67 HRC	 < 70 HRC	33	TOOLOX° 44 HRC	INOX < 900 N	INOX > 900 N	Uni	6	\																																																							
ISO code 20 2989	N	N	N	P 250	P 230	P 200	P 180	P 170	Н	Н	Н	Н	Н	H 115	H 80	M 100	M 90	0				0																																																					
				250	230	200	100	170						113			90	U																																																									
Ø e8			2	20 29	89			L _c		L ₁		\varnothing D ₁		L	Ø	D _s	Corner	roundin	ng																																																								
D_C	CADANTA A INOVAL														r _v		77776	~	18//2																																																								
	GARANT Master INOX M solid carbide milling cutter																INO	X	INOX																																																								
		3	ona carb	ide IIIIII	ng cutte															> 90	0 N	> 900 N																																																					
			Н	IPC/TP	C															f _z		f_z																																																					
mm				TiAIN				mn	1	mm		mm		mm	m	m	1	mm		mr	n	mm																																																					
3				41.58				8		13		2.8		57	6	5		0.1		0.0	2	0.03																																																					
4	41.58			11		17		3.8		57	6	5		0.1		0.03		0.04																																																									
5				41.58				13		19		4.8		57	6	5		0.1		0.0	4	0.05																																																					
6				41.58				13		19		5.8		57	6	5	0.1			0.0	4	0.05																																																					
6M				49.30				18		24		5.8		62	6	j	0.1			0.0	4	0.05																																																					
8				59.20				21		25		7.7		63	8	3	0.15			0.0	6	0.07																																																					
8M				65.93				24		30		7.7		68	8	3	0.15			0.0	6	0.07																																																					
10				79.00				22		30		9.7		72	10	0	0.2		0.2			0.07		0.08																																																			
10M				88.90				30		38		9.7		80	10	0		0.2		0.0	7	0.08																																																					
12				98.80				26		36		11.6		83	1.	2		0.2		0.0	7	0.08																																																					
12M				123.75				36		46		11.6		93	1.	2		0.2		0.0	7	0.08																																																					
14				123.75				26		36		13.6		83	14	4		0.2		0.0	8	0.09																																																					
16		158.40		158.40		158.40		158.40		158.40		158.40			36		42		15.5		92	10			0.2		0.0		0.09																																														
16M		193.05		193.05		193.05		193.05		193.05		193.05		193.05		193.05		193.05		193.05		193.05		193.05		193.05		193.05		193.05			48		58		15.5		108	10	6		0.2		0.0	8	0.09																												
18		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10		188.10			36		42		17.5		92	10			0.2		0.		0.12
20				237.60				41		52		19.5		104	20	0	0.2			0.1		0.12																																																					
20M				287.10				60		74		19.5	126		2	0	0.2			0.	0.12																																																						

60

24.5

125

25

0.2

0.12

0.14

GARANT Master INOX M SlotMachine solid carbide roughing end mill HPC, TPC

With a **new-type knuckle form profile**, optimised for higher feed rates in INOX. Improved cutting edge protection thanks to slight edge honing.

Tremendous bending strength due to the use of ultra-fine grain substrate.

Number of teeth tailored to performance and process reliability.

205453/5454 - **Problem-solver** for **TPC machining.**

Ideal for automated production as the risk of chip accumulations

in the machine is largely prevented.

Advantage: The tool geometry produces particularly tightly rolled swarf

that is discharged via flat chip breaker recesses.

As a result, the tool maintains an extremely stable core.

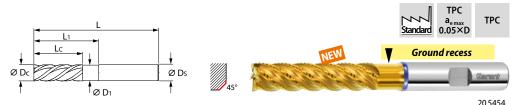
Application:

 $20\,5448/5450-For \ roughing \ machining, particularly \ suitable \ for \ full-slot \ machining.$

Note:

20 5453 – $ae_{max} = 0.07 \times D$ for TPC machining. 20 5454 – $ae_{max} = 0.05 \times D$ for TPC machining.

 $20\,5453/5454-\,\,h_{\text{max}}$. The values stated in the table are maximum values.



Suitable for/ v _c [m/min]	Alu plastics	Alu Alu	Alu cast > 10 % Si	I < 500 N	X < 750 N	I < 900 N	I < 1100 N	I < 1400 N	< 55 HRC	J < 60 HRC	 < 65 HRC	I < 67 HRC	X < 70 HRC	INOX < 900 N	INOX > 900 N	Ti > 850 N	Graphite GRP CRP	Uni	6	\		*	
ISO code	N	N	N	P	P	P	P	P	Н	Н	Н	Н	Н	M	M	S	N						
20 5448/5450				150	140	120	110	100						90	80			0			0		0
20 5453				140	130	110	100	90						80	75			0		•	0		0
20 5454				130	120	100	95	85						75	70			0		•	0		0

Ø d11 D _c	≥ 20 5448 GARANT M Sloth solid carbide re	No. of teeth Z	I	- c	L ₁	Ø D ₁	L		Ø D _s	Corner cham- fer width at 45°	INOX > 900 N	INOX > 900 N	
	H	IPC		20 5448	20 5450	20 5450	20 5450	20 5448	20 5450				
mm	TIAIN	TIAIN		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
4	62.27	73.26	4	8	11	19	3.7	54	57	6	0.15	0.01	0.015
5	62.27	73.26	4	9	13	19	4.6	54	57	6	0.15	0.015	0.02
6	62.27	73.26	4	10	13	19	5.6	54	57	6	0.15	0.02	0.025
8	79.50	93.06	4	12	19	25	7.4	58	63	8	0.2	0.03	0.035
10	107.51	114.35	5	14	22	30	9.3	66	72	10	0.2	0.035	0.04
12	110.48	129.10	5	16	26	36	11.1	73	83	12	0.25	0.04	0.05
16	199.98	236.31	5	22	32	42	14.8	82	92	16	0.35	0.05	0.06
20	287.10	339.77	5	26	38	52	18.5	92	104	20	0.4	0.06	0.07

Ø d11 D _c	≅ 20 5453 GARANT M. Slotty solid carbide re	No. of teeth Z		<u> </u>	L ₁		Ø D ₁	ØD ₁ L		Ø D _s Corner cham fer width at 45°		INOX < 900 N h _{max}		
	T		20 5453	20 5454	20 5453	20 5454		20 5453	20 5454			20 5453	20 5454	
mm	TiAIN	TiAIN		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
6	81.58	93.85	4	18	25	24	32	5.6	62	66	6	0.15	0.032	0.029
8	108.90	125.24	4	24	33	30	40	7.4	68	79	8	0.2	0.042	0.038
10	129.69	149.00	5	30	41	38	48	9.3	80	89	10	0.2	0.051	0.046
12	153.95	177.21	5	36	49	46	56	11.1	93	100	12	0.25	0.06	0.054
16	280.17	321.75	5	48	65	58	72	14.8	108	123	16	0.35	0.078	0.071
20	437.58	-	5	60	-	74	-	18.5	150	-	20	0.4	0.097	-

OUR CONSULTANTS KNOW VIRTUALLY EVERY MILLING CUTTER, LIKE THE BACK OF THEIR HAND.

Your projects are as important to us as if they were our own. More than 1,400 consultants are always ready to offer you personal and expert assistance. Worldwide.

www.hoffmann-group.com

This advertising brochure, its graphic layout and the item numbering system used are protected by copyright.

Reprinting and reproduction of any kind – even as extracts – is permitted only with the written authorisation of Hoffmann SE, 81241 Munich, Germany.

All prices are catalogue prices, plus VAT, valid until 31.07.2022; prices in £ without guarantee. We reserve the right to correct errors and make changes.

B7 5JR